

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

SIMON KUZNETS KHARKIV NATIONAL UNIVERSITY OF

ECONOMICS

Guidelines

to writing a diploma project for students of higher

education, specialty 121 "Software engineering" of the

educational program "Software engineering" of the first

(bachelor's) level

Authors: Parfyonov Yu.E.

 PolyakovA. O.

Ushakova I. O.

Frolov O.V.

D.O. Bondarenko is responsible for the release.

Kharkiv

HNEU

2024

2

UDC 004.415 (07.034)

M54

Approved at a meeting of the Department of Information Systems.

Protocol No. 8 dated January 19, 2024.

Independent electronic text network publication

Authors : Yu. E. Parfyonov

A.O. Polyakov

I. O. Ushakova

 O. V. Frolov

Methodical recommendations for writing a diploma project for students

of higher education, specialty 121 "Software engineering" of the educational

program "Software engineering" of the first (bachelor) level [Electronic

resource] / Yu. E. Parfyonov, A. O. Polyakov, I. O. Ushakova, O. V. Frolov. –

Kharkiv: KHNEU, 2024. - 65 p.

The issue of the organization of the diploma project is outlined, the requirements for

the structure of the diploma project, methodical recommendations for the development of its

structural elements are given.

It is recommended for applicants of the 121 "Software Engineering" specialty of the

"Software Engineering" educational program of the first (bachelor's) level.

UDC 004.415 (07.034)

© Simon Kuznets Kharkiv National University of

Economics, 2024

Introduction

Diploma project is one of the most important types of self-studies that

completes the preparation of applicants for a bachelor's program, as well as

the basis for conducting state certification of bachelors.

The main task of diploma project is to prepare the applicant to perform

the tasks and duties provided for primary positions in a certain type of economic

activity.

A bachelor's diploma project can be the initial stage of a master's thesis.

The methodical recommendations outline the general requirements for

the organization and conduct of diploma project, the content, structure and

scope of diploma projects, organization of work on the project, design and

defense of the diploma project.

The content, scope and structure of the diploma project, which are given

in the methodological recommendations, are typical and may be changed in

some cases with the written permission of the graduation department.

The methodical recommendations are intended for applicants who are

studying in specialties 121 "Software engineering" of the "Software

engineering" educational program of the first (bachelor's) level.

The educational component "Diploma Project" is the final stage of the

preparation of bachelors in the "Software Engineering" educational program.

In accordance with the educational and professional program of training

bachelors in software engineering, the discipline participates in the formation

of learning outcomes and competencies, which are defined in the table. 1.

Table 1
Learning outcomes and competences formed by the educational discipline

Learning outcomes Competences that must be
mastered by a student of higher

education

1 2

LO09

GС02

GС03

SK01

SK04

4

The end of the table 1

1 2

LO11
SС01

SС02

LO12
SС01

SС02

LO14

SС04

SС05

SС13

LO15

SС10

SС11

SС13

LO16
GС10

SС12

LO19
GС02

SС04

LO20

GС02

SС04

SС09

LO23

GС03

GС04

SС10

LO24

GС02

GС10

SС09

where, GС02. Ability to apply knowledge in practical situations;

GС03. Ability to communicate in the state language both orally and in

writing;

GС04. Ability to communicate in a foreign language both orally and in

writing.

GС10. The ability to act socially responsibly and consciously;

SС01. Ability to identify, classify and formulate software requirements;

SС02. Ability to participate in software design, including modeling (formal

description) of its structure, behavior and functioning processes;

SС04. Ability to formulate and ensure software quality requirements in

accordance with customer requirements, terms of reference and standards;

SС05. Ability to comply with specifications, standards, rules and

guidelines in the professional field when implementing life cycle processes;

5

SС09. Ability to evaluate and take into account economic, social,

technological and environmental factors affecting the field of professional

activity;

SС10. The ability to accumulate, process, and systematize professional

knowledge about creating and maintaining software and recognize the

importance of life long learning;

SС11. Ability to implement phases and iterations of the life cycle of

software systems and information technologies based on appropriate software

development models and approaches;

SС12. Ability to carry out the system integration process, apply change

management standards and procedures to maintain the integrity, overall

functionality and reliability of the software;

SС13. Ability to reasonably choose and master tools for software

development and maintenance.

LO09. Know and be able to use methods and tools for collecting,

formulating and analyzing software requirements;

LO11. Select input data for design, guided by formal methods of

requirements description and modelling;

LO12. Apply effective software design approaches in practice;

LO14. Apply in practice software tools for domain analysis, design,

testing, visualization, measurement and documentation of software;

LO15. Motivated choice of programming languages and development

technologies to solve developing and maintaining software the problems;

LO16. To have skills in team development, approval, design and release

of all types of program documentation;

LO19. Know and be able to apply software verification and validation

methods;

LO 20. Know approaches to software quality assessment and assurance;

LO23. Be able to document and present the results of software

development;

LO24. Be able to calculate the economic efficiency of software systems.

6

1. The purpose and tasks of diploma project

Diploma project is the final stage of bachelor's training.

The diploma project is a qualifying work designed to objectively monitor

the degree of formation of graduates' abilities to solve typical activity tasks that

belong to design (design and construction) and executive (technological,

technical) production functions.

The goal of diploma project is to generalize and systematize the

knowledge and practical skills of the applicants, which they acquired during the

study of educational disciplines of humanitarian and socio-economic training;

mathematical and natural science training; professional and practical training.

In the process of working on a diploma project, applicants acquire skills in the

analysis of scientific and technical, normative and reference literature, the use

of state standards, the drafting of an explanatory note to the project, and the

practical application of knowledge when making specific project decisions.

The tasks of diploma project are:

systematization, consolidation and expansion of theoretical knowledge

and practical skills in the direction of preparation, application of this knowledge

and skills in the process of completing specific tasks of the diploma project;

development and consolidation of independent work skills;

improving the ability to use modern programming systems, to solve

engineering tasks for the design of information systems and their elements,

using modern methodologies, information technologies, to conduct computer

modeling, as well as the ability to process and systematize the results of

research, using computer technology and appropriate tools;

determination of compliance of the level of training of the graduate with

the requirements of the educational and qualification characteristics of the

bachelor, his readiness and ability to work independently in the conditions of

the market economy, modern production, progress of science and technology.

Carrying out the diploma project, the acquirer must make full use of

acquired knowledge of information technologies and computer equipment,

intelligent systems and knowledge bases, available packages, methods and

means of mathematical information processing; combine theoretical

knowledge with production experience gained during practice; use the

achievements of domestic and world science and technology ; take into

account the technical and economic indicators of the functioning of the created

software and information systems and complexes; perform the design of

7

selected technical solutions at a high theoretical and professional level;

competently, fully and at the same time succinctly state your decisions in an

explanatory note.

During the defense of the diploma project, the applicant must concisely

convey the main content of the work, emphasizing its relevance and novelty,

the possibilities of its practical application, present the technical solutions

adopted in it with arguments and justify the obtained results.

The diploma project is an independent work of the applicant. The author

is responsible for all project solutions developed in it, as well as the

correctness, validity of calculations and proper design of its materials.

A candidate who has completed a full course of study and passed all the

credits and exams provided for in the curriculum, i.e. has fulfilled all the

requirements of the curriculum in terms of training, is admitted to the diploma

project.

8

2. Organization of the diploma project

The applicant may be assigned a topic of the diploma project from the list

of recommended topics. He is also given the right to independently choose a

topic, taking into account his inclinations and opportunities to apply the

acquired knowledge to the fullest extent. If the topic is proposed by the

applicant, it must be discussed and agreed with the head of the diploma project.

For approval of the chosen topic, the applicant submits an application to

the head of the Department of Information Systems. A sample statement is

provided in Appendix A.

The direct management of the diploma project is entrusted to the

teachers of the department, who are appointed by the head of Department of

Information Systems.

The mentor of the diploma project assigns the applicant; helps the

applicant in drawing up a calendar plan; conducts consultations; controls the

project execution process according to the calendar plan; recommends the

acquirer to scientific and technical literature and normative and reference

sources on the topic of the project; checks work materials; carries out a

preliminary hearing of the results of the diploma project.

The recipient completes the diploma project independently. This requires

a clear organization of its work from the moment of choosing the topic of the

work to its defense.

At the initial stage, the applicant must familiarize himself with the main

publications on the topic of the diploma project and make a list of them.

Based on the study of literary sources, which should include both

monographs, textbooks and study guides, articles in periodicals, as well as

patent materials, scientific and technical reports, abstract publications, the

applicant must clearly imagine what has been done in the theoretical and

applied aspects of the topic of the diploma project, as well as get acquainted

in detail with similar solutions in the relevant field. Based on the results of this

work, an analytical review (comparative analysis) is drawn up, from which the

selected research methods should logically follow.

After studying the literary sources, the applicant draws up a preliminary

plan for the implementation of the diploma project, discusses it with the

supervisor. In the process of discussion, the initial data for designing and the

terms regulating the work of the acquirer are clarified. After that, the acquirer

draws up a detailed plan of work on the project, agrees it with the manager and

9

starts designing. During the implementation of the diploma project, the

applicant must regularly attend the supervisor's consultations, submit working

materials to him for review in accordance with the plan-schedule of the project's

stages .

The control of the head of the diploma project does not release the winner

from full responsibility for the validity of the decisions made, compliance with

standards, deadlines for the implementation of the calendar plan.

At the meetings of the Information Systems Department, reports from the

heads of diploma projects about the progress of the calendar plans are

regularly heard. Applicants who do not adhere to the project implementation

schedule or are significantly behind in its implementation are invited to report

to the department meeting.

10

3. Structure, content and scope of the diploma project.

General requirements for diploma projects

Diploma project consists of an explanatory note and other mandatory

materials (diagrams, diagrams, graphs of dependencies, tables, drawings,

program listings, etc.) developed according to the task.

The volume of the explanatory note is 50-70 printed pages of A4 format

(without appendices).

The general structure of the explanatory note of the diploma project and

the recommended number of pages are given in the table. 2 .

Table 2

The structure of the explanatory note of the diploma project

Structural elements of the explanatory note
Number of

pages

Title page 1

Tasks for the diploma project 2

Abstract 1 - 2

Content 1

List of conventional abbreviations 1

Introduction 1 - 2

Chapter 1 9 - 12

Section 2 14 - 19

Section 3 14 - 20

Chapter 4 8 - 10

Conclusions 1 - 2

references 2 - 3

Appendices

The explanatory note is printed on sheets of A4 paper. Its text should be

written using the Times New Roman typeface (point 14), with a line spacing of

1.2.

Explanatory note page margins: 30 mm from the left edge of the sheet,

10 mm from the right edge of the sheet, 20 mm each from the top and bottom

edges of the sheet.

11

Paragraph indentation should be the same throughout the text and equal

to 1.27 cm.

Alignment of the main text is done "by width".

Detailed requirements for drawing up an explanatory note are given in

the relevant methodological recommendations [20].

The diploma project is aimed at the analysis, modeling, forecasting of

information processes or management of such processes in the economy (as

an example, you can consider a separate enterprise, organization, industry or

geographical region). They involve the selection of a specific subject area for

analysis and research. The implementation of such projects involves the

analysis of the subject area based on the study of special literature and

familiarization with information processes directly at enterprises and

organizations.

The substantive part of the project explanatory note must contain:

1. Analysis of the subject area;

2. Specification of software requirements;

3. Design and technical solutions;

4. Software testing.

The structure of the substantive part of diploma projects of a practical

nature , which must be followed, is given in Appendix G.

12

4. Methodological recommendations for the

development of structural elements of the explanatory

note

4.1. General recommendations for the development of the

explanatory note of the diploma project

The general requirements for the text of the explanatory note are the

logical sequence of the presentation of the material, the clarity and specificity

of the presentation of the theoretical and practical results of the work, the

essence of the assignment and the purpose of the work, research methods,

decisions made, the provenance of the conclusions and the validity of the

recommendations. In the text of the explanatory note, it is necessary to adhere

to a single terminology. It should not be overloaded with uninformative material,

description of well-known data, derivation of formulas, etc. It is necessary to

refer to sources of information. In the text of the explanatory note, the

mathematical apparatus used and the results of calculations performed using

a PC should be indicated.

The text of the explanatory note should not be written in the first person,

it is better to use the impersonal form (for example, "calculated", "found") for

the entire text in the specified case and tense.

When laying out the material, you should not use:

colloquial turns;

slang words and phrases;

different terms for the same concept;

foreign words and terms if there are equivalent words and terms in the

Ukrainian language;

abbreviations of words and phrases, in addition to those established by

the rules of spelling and regulatory documents.

The first page of the explanatory note is the title page. He contains the

following data:

information about the performer of the work - a legal entity (organization)

or an individual;

full name of the document;

signatures of responsible persons;

the year of drafting the explanatory note;

13

A sample title page of the diploma project is given in Appendix D.

The abstract is a summary of the content of the explanatory note,

containing the main factual information and conclusions necessary for the initial

familiarization with it. The abstract is written in Ukrainian and English.

The abstract should be concise, informative and contain information that

allows decisions to be made about the feasibility of reading the explanatory

note.

The abstract should contain:

information about the volume of the explanatory note, the number of

illustrations, tables, appendices, the number of sources according to the list of

references (all information is given, including the data of the appendices);

abstract text;

list of keywords.

The text of the abstract should reflect the information provided in the

explanatory note in the following sequence:

object of research or development;

The purpose of the work;

research methods and equipment;

results and their novelty;

main technological and operational characteristics and indicators;

relationship with other works;

recommendations on the use of work results;

field of application;

significance of work and conclusions;

predictive assumptions about the development of the object of research

or development.

The abstract should be no more than 500 words long, and preferably on

one page of A4 format.

Keywords are intended to reveal the essence of the project and to

disseminate information about the development. They are placed after the

abstract text. The list of keywords contains from 5 to 15 words (phrases),

printed in capital letters in the nominative case on a line separated by commas.

Examples of essays are given in Appendix E.

The content includes: introduction; names of all sections, subsections

and points of the main part of the explanatory note; conclusions; References;

names of appendices and page numbers that contain the beginning of the

material.

14

An example of the content of the explanatory note is given in Appendix

D.

If the explanatory note uses little-known abbreviations, new symbols,

designations, etc., then it should contain a list of conventional abbreviations,

which is presented in the form of a separate list, placed before the introduction.

Despite this, for the first appearance of these elements in the text of the

document, their transcript is provided.

If special terms, abbreviations, symbols, designations are repeated less

than three times in the work, the list is not compiled, and their transcription is

provided in the text at the first mention.

An example of a list of conditional abbreviations is given in [19].

The introduction is a reflection of the work, so it should be carefully

processed. It is better to form the introduction after completing the main text of

the explanatory note.

In the introduction to the diploma the project needs to identify and

formulate a business problem that has arisen at the enterprise, justify the

relevance of the project topic for solving this problem on the basis of the

developed module or system. Briefly describe the functionality of the module

or system. It is necessary to characterize the technical and software platforms

for the development of the automated module. It is necessary to formulate the

goal and task of the project, to define the object and subject area of the design.

It is also necessary to provide information on the design tools used in the

diploma project and the possible fields of application of the results obtained in

the diploma project.

Conclusions for the work are a summary of the results of the entire work.

This part is of particular importance, since the final results of the work should

be presented here.

The explanatory note must contain conclusions for each stage of the

completed project and for the work in general, which must be correlated with

the goal and task of diploma project.

It is necessary to note the practical value of the work results, to give

recommendations for further improvement of the design object. Noting the

practical value of the obtained results, it is important to outline the degree of

their readiness for use, the scope of use, as well as to provide concise

information on the implementation of research results, indicating the names of

the organizations in which the implementation was carried out, forms of

implementation, details of documents, etc. If the diploma project is

15

implemented at the enterprise, then a certificate or act of implementation is

attached to the diploma project.

They provide information on where and when the obtained results were

tested (at which conferences and seminars they were presented), the

publications of the recipient are listed based on the materials of the diploma

project.

The list of used sources should contain information about the literary

sources used in the process of developing the project.

The bibliography is a register of used sources on the topic of the project

in the broadest possible sense. Therefore, one should not limit oneself to only

cited literature. The list should include all materials that were read, reviewed,

analyzed in the process of working on the diploma project and related to its

topic. It is advisable to provide the sources as completely as possible,

remembering that the bibliographic list for the project is a summary of the study

of the problem and a prerequisite for further scientific research.

The list of used sources is drawn up in accordance with DSTU 8302:2015

"Bibliographic reference. General requirements and rules of compilation" [9].

The list of used sources must contain at least 30 sources. It is presented

in the original language, placed in alphabetical order of the first authors'

surnames or titles, and numbered in ascending order. Numbering is

continuous.

The works of one author are arranged alphabetically by title or in the

chronology of their writing. The alphabetical list is arranged alphabetically in

the following sequence:

literature of the combined Cyrillic alphabet, for sources in languages with

Cyrillic graphics (Ukrainian, Bulgarian, etc.);

literature in the Latin alphabet;

electronic resources in the same sequence as printed editions (first in

Cyrillic and then in Latin).

The list of used sources must contain the surname and initials of the

author, the full name of the source, the city of publishing, the publisher and the

year of publication, the number of pages or links to pages, etc. The total volume

of the book in pages is indicated if the reference is made to it in its entirety,

pages (from ... to) are noted if the reference refers to a separate part of the

literary source.

16

Appendices contain material that is necessary for the completeness of

the explanatory note, but cannot be consistently placed in its main part due to

the large volume or for other reasons .

Illustrations (diagrams of business processes, dialogue scenarios, etc.),

tables, intermediate mathematical proofs, formulas and calculations, auxiliary

text, etc. can be made in the form of attachments.

4.2. Recommendations for the development of sections of the

main part of the explanatory note of the diploma project

CHAPTER 1. ANALYSIS OF THE SUBJECT FIELD <NAME>

The purpose of Section 1 is a detailed study of the main aspects and

characteristics of the subject area of the project, namely, the definition of the

content and modeling of the subject area, a review of literary sources regarding

existing solutions and analogues, positioning of the software product.

Subsection 1.1. Definition of content of the subject area

Defining the content of the subject area provides context and

understanding of the problem or problem to be solved. If the topic of the

diploma is related to business, then this subsection provides a brief description

of the areas of activity of the management object (enterprise, organization); the

business problem to be solved is defined. Otherwise, the subject area is

determined without reference to the enterprise.

Here it is necessary to define:

development goals and objectives;

context and scope. Context is the boundaries within which processes are

performed and related events occur, and the resources necessary for their

appropriate interpretation; scopes are usually defined in terms of product, type

of customer or industry;

connections and interactions with other subject areas. A subject area can

be complex and include different elements that are related to each other;

key concepts and terms specific to this subject area. It can include many

interrelated concepts, processes, subjects and objects;

changes and evolution of the subject area. The subject area may be

subject to change and development over time. New technologies, research and

requirements can influence the subject area, leading to its change and

development .

Subsection 1.2. Modeling of the subject area

17

Modeling of the subject area involves the creation of a system of models

that simulate the structure and functioning of the studied subject area and meet

the basic requirements - to be adequate to this area.

In subsection 1.2. necessary:

to determine the composition of the company's divisions and the

connections between them, to develop a diagram of the company's

organizational structure;

to develop a diagram of the organizational structure of the unit (units)

related to the defined business processes;

determine the composition of functions included in the business process,

develop a function tree diagram;

develop a business process management model and describe it (Table

3).

Table 3

Characteristics of the business process "Name"

The name of the characteristic The value of the characteristic

The name of the business process

Main participants*

Input event

Incoming messages / documents**

Weekend event

Outgoing messages / documents**

Business Process Client***

*for each participant, indicate the structural division, position, his role in the business

process,

** provide a list of documents

*** process using process information

CASE tools are used to model the subject area.

In the process of modeling, it is necessary to distinguish the transactional

component of the business process, which ensures the collection,

accumulation and processing of quantitative data about the current state of the

management object, as well as the analytical component, which provides the

analysis of quantitative indicators formed into transactional components.

18

The analytical component of the business process should ensure the

study of quantitative indicators in various sections and dimensions (by time

periods, by goods, by customers, divisions, etc.).

Conducting such a multi-faceted analysis will provide informational

support for decision-making aimed at solving the identified problem.

Subsection 1.3. Review and analysis of literary sources regarding

existing solutions and analogues

In subsection 1.3. it is necessary to conduct a review of literary sources

regarding existing approaches to the development of software for a

correspondingly defined problem, goals and tasks that relate to business

requirements and principles, certain technologies, platforms, libraries, etc.

During the review, references should be made to relevant sources (for

example, in the work [..] the authors conduct a systematic review; the author

touches on (covers) such problems (questions, facts); the work [..] of the author

concerns; the author in the work [..] draws a conclusion (summarizes, says,

asserts), points out (analyzes, characterizes, reveals) shortcomings

(contradictions, essence), describes, names, formulates, puts forward

(hypothesis, question), makes an assumption, stops, emphasizes, asserts,

proves etc. based on the results of the review, a conclusion is made regarding

the use of better approaches to development.

It is necessary to choose several of the most popular analog software

products designed to implement the functionality of the subject area and

determine their characteristics, such as:

development company;

product versions;

Operating System;

basic functionality;

user interface;

user assistance;

usage price per month/year;

availability of a free version / plan;

etc.

The results of the analysis are given in the table (Table 4):

Table 4

Characteristics of similar software products

19

The name of the software

product

<Product Name 1> <Product Name 2> . . .

Development company

Product versions

Operating System

Basic functionality

User interface

Help for the user

The price of use

Availability of free version / plan

. . .

For each of the software products, provide and briefly describe the screen

forms characterizing the main functionality of the product.

At the end of the subsection, draw a conclusion about the possibility of

using certain approaches to software development and the experience of

leading companies developing software products in the development of project

solutions.

Subsection 1.4. Positioning of the created software (application,

module, system)

Positioning is the determination of how your software (application,

module, system) fits into the IT market, and how you provide unique value to

the target audience. Positioning defines how your software product differs from

the competition and why your customers need it, so it's one of the most

important steps to success.

The positioning contains a brief description of the following

characteristics:

business benefits,

problem definition,

determination of the position of the product being created.

Clause 1.4.1. Business benefits

Business benefits are a summary of the benefits achieved by the project:

relevance, i.e. importance, significance, demand for the product being

created today;

purpose, that is, how the product being developed will satisfy the needs

of the main users and other interested parties and how it will be implemented.

Clause 1.4.2. Problem definition

20

When defining the problem - a summary of the problem that is solved by

the project is given. To define the problem, use the following format (Table 5).

Table 5

Problem definition

Problem <Description of the problem>

touches <Stakeholders affected by the problem>

Its consequence

is

<What is the impact of the problem>

Successful

solution

<List of some key benefits of a successful solution>

Clause 1.4.3. Definition of position

When defining the position of the product being created, the unique

position in the market that the software product intends to fill is described at

the highest level. The definition of the position is described in the following

format (Table 6)

Table 6

Defining the position of the software product

For <target customer>

Which <determination of needs and opportunities>

<Product name> is <software product category>

Which <definition of the key advantage (the reason that prompts to

purchase / use the product>

Unlike <main competitive alternative>

Our product <definition of the main difference>

SECTION 2. SOFTWARE REQUIREMENTS SPECIFICATION

The purpose of Chapter 2 is to develop and detail the requirements for

the software (application, module, system, etc.) being developed. This section

contains a glossary, development of use cases, specifications of functional and

non-functional requirements according to the RUP methodology. If a different

approach to the specification of requirements is used, then the structure of the

section may be different in agreement with the manager.

Subsection 2.1. Glossary

The glossary is a dictionary of the main terms used in the project. This

21

document is the first result of a conceptual analysis of the subject area. The

glossary can be considered as a document certifying the common

understanding of the basic terminology by the Customer and the Developer.

In addition, the glossary is a starting point for building more detailed

models of the subject area, which at the stage of implementation of the

information system form the basis of the object model (for object-oriented

applications) and the data model (for generating the database schema).

The glossary must be submitted in the form of a table. 7.

Table 7

Glossary

Term Description of the term

1. Basic concepts and categories of the subject area and the project

2. System users

3. Input and output documents

Subsection 2.2. Development of use cases

Development of use cases contains:

− diagram of use cases;

− specification of use cases.

Clause 2.2.1. Use case diagram

A use case diagram represents the functionality that will be implemented

in the software product. A use case can be considered as a function

implemented by the system. However, any feature must have value and

provide an opportunity to get the end result for the end user of the product or

service. Therefore, when specifying the use case, among all the functionality

of the system, only that functionality is singled out, which:

− useful to a specific end user;

− allows the user to receive specific finished results.

Before proceeding to the actual specification of requirements in the form

of a use case, the RUP usually compiles a register (list) of actors (Table 8) and

22

use cases (Table 9).

An actor is an actor, an entity external to the designed system that

interacts with the system and uses its functionality to achieve a certain goal or

solve private tasks. The actor will usually be the system user. In addition to the

user, another software system, hardware device, time can be considered as an

actor. Searching for system actors usually boils down to analyzing the roles of

different users. The choice of actors depends on their functional

responsibilities, demarcation of access, ways of using the information system.

A use case is a description of a sequence of actions that a system can

perform in response to external influences of actors. The purpose of a use case

is to define a finished aspect or piece of behavior of a system that has its own

behavior without revealing its internal structure.

Table 8

List of actors

Actor Brief description

23

Table 9

List of usage options
\

Option

of use

Brief description of the

use case
Actor Main/auxiliary

The next step is to decompose the main use cases to describe them in

more detail. Additional use cases detailing the main purpose are considered

(for example, for the main use case "Formation of an order", additional options

"Create an order", "Calculate a discount", etc.) are allocated. In a use case

diagram, the relationships between primary use cases and secondary use

cases are defined by generalization, inclusion, and extension relationships.

The results of the decomposition should be presented in the table. 10.

Table 10

Decomposition of use cases

The main option

using

Detailed

usage option
Communication type

Next, a diagram of use cases in the environment of a particular CASE

tool is created.

Clause 2.2.2. Specification of use cases

Each use case should have a description. In the diploma project, you
should provide a description of the use cases that implement the main
functionality (usually in addition to maintaining directories) in the form of a table
(Table 11).

Table 11

Use case <Name>

Option of use <ID><Use case name, in verb form with explanatory words>

Context of use <Description of a set of functions combined by a context>

The characters <List of actors>

Prerequisites <Description of actions to be performed before executing the use

case>

Trigger <Description of the event that triggers the execution of the use

case>

End of table 11

24

Post-conditions <Set of states guaranteed by the system regardless of the success

of the use case execution>

The main stream 1. Actor <action>

2. System <action>

3. Actor <action>
. . .

Expansion 4a. The name of the extension point for a specific script

4a.1. System <action>

4a.2. System <action>

. . .

The name is a short phrase in the form of a verb in the indefinite form of

the perfect form or a verbal noun that reflects the purpose.

Context - concisely describes in one paragraph what the option should

do and what the final result is expected from it.

The active persons are:

Main (primary) actors.

Supporting (secondary) actors.

A prerequisite is a use case that must be fulfilled in order for this case to

be executed. The prerequisite describes the state in which the system must be

before the execution of the variant begins.

A trigger is a domain event that causes a use case to be used.

Sometimes a trigger precedes the first step of a use case, and sometimes it is

the first step itself.

Posthumous – a usage option that must be executed after the execution

of this option; this is the state in which the system should be after the

completion of the option; it is what is guaranteed to the participating actors,

regardless of the success of the execution of the given option. For example, in

the event of a failed transaction, all data that was in the system before it started

is kept unchanged.

Events described by preconditions or postconditions must be states that

the user can observe.

The main flow - the numbered steps of typical actions starting from the

trigger until achieving a guarantee of success are listed as a certain scenario

of interaction between the system and the user.

Extensions are exceptions to the steps of the main flow, which are

processed according to their algorithms according to the business logic of the

process. An extension starts with an extension point name that begins with a

25

number step of the main flow of adding a letter of the Latin alphabet (a, b, c),

followed by a sequence of actions of the system and the user.

Subsection 2.3. Specification of functional requirements

To specify the functional requirements defined in the previous paragraph,

it is necessary to define their attributes:

priority – filled in by the analyst, shows the priority of implementing the

requirement for the client. It is used in project management and determines the

priority of requirement development. Possible values: mandatory,

recommended, optional (optional);

difficulty – filled in by the project manager, shows the level of labor costs

associated with the implementation of the requirement. It is used in project

management and affects the sequence of development. The difficulty of

fulfilling the requirement can be expressed in the form of labor intensity and

indicate the number of man-days required for its implementation or in the form

of scale values: high, medium, low. High difficulty is the likelihood that the

requirement is very expensive in terms of resources or money. It must be

performed first or it is abandoned;

influence on architecture - filled in by the architect. Indicates whether the

use cases will affect the core of the software architecture. The attribute can

take the value: yes, if it affects the main part of architectural decisions, or no -

if it does not affect. Used to prioritize project execution by use cases. It is

necessary to establish in advance which use cases affect the main part of the

architectural solutions. These use cases are implemented first.

contact – filled in by the analyst, identifies the interested person who can

provide the necessary information about the requirement (contact name). Used

to ensure that developers can get the information they need to implement a

requirement. The Performer attribute is often used instead of Contact.

If one person acts as a contact in the project, this column can be omitted,

but the contact must be identified once in the text of this item. The specification

of functional requirements is given in the table (Table 12)

Table 1 2

Specification of functional requirements

Requirem

ent ID

Name of

requirement

(use option)

Requirement attributes

Priority Difficulty Influence on

architecture

Contact /

Performer

26

UC1

...

Subsection 2.4. Specification of non-functional requirements

Non-functional requirements can be divided into the following groups:

1. Applicability:

the time required to train ordinary and experienced users;

measurable response time for typical tasks;

basic requirements for applicability of the new system relative to other

systems known to users;

requirements to conform to common applicability standards, such as the

IBM User Interface Standards or the Microsoft Graphical User Interface

Standards for Windows.

2. Reliability:

Availability - determines the % of available time (xx.xx %), usage time,

time spent on maintenance, disruption of work mode, etc.

average uptime - usually defined in hours, but can also be defined in

days, months or years;

average service life before repair - how long the system is allowed to

work before it needs to be serviced;

accuracy - defines the bit rate (resolution) and accuracy (according to

some known standard) that are required in the system's output data;

maximum error or defect rate - usually expressed in terms of the number

of errors per thousand lines of code or the number of errors per functional unit.

3. Operating characteristics.

Here it is necessary to highlight the specific characteristics of

performance, speed, capacity, use of system resources. Where possible,

reference should be made to related uses by name.

transaction speed (average value, maximum);

performance (for example, the number of transactions per second);

capacity (for example, the number of customers or transactions that the

system can accommodate);

reduced performance modes (which is an acceptable mode of operation

when the system has become somewhat worse);

resource usage: memory, disk space, communications, etc.

4. Serviceability

27

This group includes all requirements that extend the usability or reliability

of the system being developed, including coding standards, naming

conventions, class libraries, and support utilities.

5. Design restrictions.

These requirements should contain all the design limitations to the

system being created. Design constraints are decisions that have been

formulated as binding and must be firmly adhered to. Examples can be

programming languages, requirements for programming technology,

mandatory use of development tools, architectural and design limitations of

purchased components, class libraries, etc.

6. Requirements for documentation intended for the user and for the help

system.

Describe requirements, if any, for interactive user documentation, help

system, warning messages, etc.

7. Purchased components.

Describes all purchased components to be used by the system, any

applicable licenses or restrictions on use, and any information about

compatibility and/or interoperability or interface standards.

8. Interfaces.

Define the interfaces that must be supported by the application. It should

contain adequate specifications, protocols, ports and logical addresses, etc.,

so that the software can be developed and tested for compliance with the

requirements of the interfaces.

8.1. User interfaces.

Describes the user interfaces that must be implemented by the software.

8.2. Hardware interfaces.

All hardware interfaces that should be supported by software are defined,

including logical structure, physical addresses, expected behavior, etc.

8.3. Software interfaces.

Software interfaces with other components of the software system are

described. These may be purchased components, reusable components from

another application program, or components developed for subsystems

outside the context of these software requirements specifications, but with

which this application program must interact.

8.4. Communication interfaces.

Describes all communication interfaces to other systems or devices such

as local networks, remote serial devices, etc.

28

9. Licensing requirements.

Any mandatory licensing requirements or other usage restriction

requirements that must be met by the software are identified.

10. Copyright Notice.

Any necessary legal disclaimers, warranties, copyright notices,

succession rights, trademarks or logos for the software are described.

11. Used standards

References are given to all used standards and to specific sections of

such standards that relate to the described system. For example, it can be legal

and regulatory standards, quality standards, industry standards for

applicability, interoperability, internationalization, compatibility with the

operating system, etc.

In the specification of non-functional requirements, only those

requirements that are essential to the project are specified.

The specification of non-functional requirements with their attributes

should be listed in the table (Table 13)

29

Tables this 13

Specification of non-functional requirements

Requirement

ID

The name

of the

requireme

nt

Requirement attributes

Priority Difficulty Contact

1. Applicability

SUPP1

2. Reliability

. . .

Section 2.5. User interface design

The user interface is a kind of communication channel through which the

user and the program interact. To create an effective interface, you need to

understand what tasks users will solve with the help of this program and what

interface requirements users may have.

General principles of user interface design:

1. The program should help to perform tasks.

This means that the interface should be easy to learn, not a hurdle the

user has to overcome to get started.

2. While working with the program, the user should not feel discomfort.

To implement this principle, it is necessary:

ensure that the results of as many "incorrect" user actions as possible

are checked, but do not do it everywhere;

to tell the user exactly what to do and display informational messages in

situations when it is really necessary;

provide advanced users with the ability to disable the output of

informational messages;

it is good to think about the content of the messages displayed to the

user.

The heuristic rules of Jacob Nielsen, an authoritative American expert in

the field of interface design, are widely known [38]:

1. System status visibility.

2. Correspondence between the system and the real world.

30

3. User management and freedom of their actions.

4. Consistency and standards.

5. Preventing errors.

6. Recognition, not recall.

7. Flexibility and efficiency of use

8. Aesthetic and minimalist design

9. Helping users identify and correct errors.

10. Help and documentation.

Form design

Forms are the "building blocks" of the user interface.

To create a well-designed form, you need to understand its purpose, how

and when to use it, as well as its connections with other elements of the

program.

A special type of forms are forms designed for data entry. During

development, the main attention should be paid to the speed of their use.

To speed up the data entry process, it is advisable to:

1. If possible, use the same form to add and edit data.

2. Assign keyboard shortcuts for commands.

3. Do not force the user to "jump" from one part of the form to another.

4. Do not make the data entry process dependent on the content of

individual control elements of the form.

5. Use means of feedback to the user.

Another important part of form development is the creation of meaningful

and effective menus. Here are some important recommendations:

1. Follow standard conventions for menu item placement.

2. Group menu items in a logical order and by content.

3. Use separator lines to group items in drop-down menus.

4. Avoid redundant menus.

5. Avoid top-level menu items that do not have drop-down menus.

6. Remember to use the <…> symbol to indicate menu items that activate

dialog boxes.

7. If possible, use keyboard equivalents of commands and "hot" keys.

Here are some recommendations for designing a Web user interface:

1. Minimize the effort a user must make to make navigational decisions.

2. Use one screen whenever possible. This helps users to complete as

many tasks as possible without having to navigate too much.

31

3. When creating multiple pages, combine them into sections. Make it

easy to move between sections with a main navigation control and an

additional section navigation control.

4. Make sure that key elements such as menus, headings, and other

information displayed on all pages are visually consistent.

5. Always think about future expansion. If new functions are expected to

be added to the software system in the future, it is first necessary to decide

how the navigation will be expanded to effectively add new screens.

In this unit, you need to develop the graphical user interface of the

application in the form of a wireframe or mockup, which is used to obtain the

approval of the stakeholders for the proposed concept.

The user interface (UI - English User interface) ensures the transfer of

information between the human user and the hardware and software

components of the computer system.

The purpose of designing the interface is to obtain an early reaction of

users to the proposed system concept. Figma, PhotoShop, Marvel, Pencil

Project, etc. are used as tools.

Wireframe (English wireframe, frame) – a structural diagram of the

arrangement of interface elements with an example of content (text,

illustrations, tables) and highlighting, which partially reflects the work with the

product. A wireframe is a low-fidelity design image. It should clearly show:

main groups of content (What?);

information structure (Where?);

description and basic visualization of interaction between the interface

and the user (How?).

Wireframe does not contain graphic design (visual design). Interface

elements are presented in a simplified form, for example, using "fillers" -

rectangles crossed by criss-cross lines for images. That's why wireframes are

usually called low-fidelity (lo-fi) data. The scheme is supplemented by a text

document describing the logic of the product's operation and the user's

interaction with it.

A mockup is a medium or highly detailed static representation of a design.

It conveys the structure of information, visualizes content and demonstrates

basic functionality in the form of static images. Allows you to understand what

the final product will look like.

Mockup is a non-clickable, but more visually designed layout (almost a

design). He has:

32

show the information structure;

visualize content;

demonstrate basic functionality in statics;

give an opportunity to evaluate the visual side of the project.

SECTION 3. DESIGN AND TECHNICAL SOLUTIONS

Subsection 3.1. Justification of the architecture of the software

system

Reasonable creation of system architecture is design at the highest level.

A logical architecture describes a system in terms of its fundamental

organization in the form of components, modules, packages, program classes,

and subsystems.

The ISO/IEC/IEEE 42010:2022 standard [22] defines architecture as " the

fundamental concepts or properties of a system in its environment, embodied

in its elements, connections, and principles of its design and evolution."

The main idea of the architecture is to reduce the complexity of the

perception of the system due to the separation of powers and the creation of a

clear structure. The architecture and design of the software allows you to create

a clear structure, according to which it is convenient for programmers to work.

Its quality depends on how easy software maintenance, changes, additions

and support will be.

The term "Architecture" also refers to the documentation of software

architecture. Documenting the software architecture simplifies the process of

communication between interested parties, allows you to record decisions

about the high-level design of the system made at the early stages of design,

and allows you to reuse components of this design and design templates in

other projects.

Thus, architecture is a set of elements that have a certain form

(properties and restrictions imposed on the elements), and their justification.

The justification records the motives for choosing a certain architectural style,

elements and limitations. Justification is necessary at the stage of creating the

architecture, and is useful in the future. Because an architecture has a set of

properties that allow it to satisfy requirements, and not knowing these

requirements can lead to changes that break the architecture, but architecture

includes properties, not requirements. The architecture should be built to best

meet the requirements for the system being created, according to the "form

meets function" principle. Therefore, the design of the software architecture is

33

a process that is performed after the stage of analysis and formulation of

requirements.

The task of the software architecture design stage is to transform the

system requirements into software requirements and build the system

architecture based on them. The construction of the system architecture is

carried out by determining the goals of the system, its input and output data,

decomposing the system into subsystems, components or modules and

developing its overall structure. The design of the system architecture can be

carried out by various methods (standardized, object-oriented, component-

based, etc.), each of which offers its own way of building the architecture,

namely, the definition of conceptual, object, and other models with the help of

appropriate structural elements (block - schemes, graphs, diagrams, etc.).

The stage of architectural design of information systems can be reflected

in terms of architecture description in the chosen architecture description

language (Architecture Description Language (ADL)). Such languages include

[60] - ArchiMate, Architecture Analysis & Design Language, C4 model

(software), Darwin (ADL), EAST-ADL, Wright (ADL). Most of these languages

are based on the UML language.

If the architecture description language is UML, then the architecture

design is displayed by describing the process of object-oriented decomposition

of the system to the level of the list of subsystems and their connections,

describing its logical structure in the form of component packages (component

diagram).

So, the substantiation of the architecture in a simplified form can be

divided into three stages:

1) definition of important requirements for architecture;

2) architectural design (Architectural Design);

3) architectural documentation.

In this subsection of the explanatory note, the acquirer must highlight the

adopted architectural decisions, which must be presented in the form of a table

- see table 14.

Based on the analysis of the architectural requirements, it is necessary

to determine the main principles and solutions that will be the basis of the future

application. These are primarily reference architecture, deployment patterns,

architectural patterns (styles), architectural tactics, internal and external

components. Each decision must be justified with an indication of the

34

requirements that are satisfied in the form of identifiers of the requirements that

were assigned in section 2 (tables 12, 13).

In the reference to the requirements, those of the functional requirements

that were defined at the previous stage, as those that have an impact on the

architecture of the software system (for example, the presence of data flows,

the need to transform data, receive data from external sources, etc.) are added.

Also in the references to requirements may include quality attributes - those

non-functional requirements that can affect the architecture - system

extensibility, its availability, the ability to modify, speed, security, etc. At the

end, the references should display the architectural constraints from the group

of design constraints that were formed in subsection 2.4.

Table 14

Adopted architectural decisions

Architectural solution
Justification of the

decision
Link on request

This subsection ends with architectural views designed in the selected

architectural design language (for example, UML diagrams of packages

(components)) with a description of the purpose of structural units.

Subsection 3.2. Software design

Clause 3.2.1. Selection of means of project implementation

The choice of means of project implementation involves the justification

of the programming language(s), the software environment of the designed

system (primarily, the operating systems on which the software will work), the

database management system, frameworks and libraries, data caching tools,

message brokers, etc. .

In clause 3.2.1. it is necessary to substantiate the adopted technical

solutions (technology stack) for the implementation of the project, namely:

selection of the main programming language, or if necessary, several

programming languages;

selection of the main framework and auxiliary libraries;

selection of a database management system;

software environment and other tools used in the project.

35

For each technical solution, there should be indications of its purpose and

alternative options that were considered. It is recommended to present the

selection results in the form of a table (Table 15).

Table 15

Selection of means of project implementation

The name of

the tool
Appointment

Alternative options

considered

Justification of the

choice

Clause 3.2.2. UML class diagram (UML activity diagram)

Software System means software under development. It can be a large

collection of many software components, a single program or part of a program.

This point of the explanatory note should contain:

1. For object-oriented software systems - a UML class diagram (Class

Diagram) that implements the basic business logic of the software system, and

its brief description, in which at least the purpose of each class must be

specified. For other software systems - UML activity diagram (Activity

Diagram), which reflects the basic business logic of the software system, and

its brief description.

2. A link to the program listing containing the source code that

corresponds to the UML diagrams given in point 1. The program listing itself

should be in one of the appendices to the explanatory note.

Next, there are methodological recommendations for designing a

software system.

Recommendations for the development of a UML class diagram

(Class Diagram) that implements the basic business logic of the software

system.

A UML class diagram is used to represent the static structure of the

software system model. It can reflect, in particular, various relationships

between separate entities of the subject area, such as objects and subsystems,

and also describes their internal structure and types of relationships.

A class in the UML language is used to denote a set of objects that have

the same structure, behavior and relationships with objects of other classes. A

36

class may not have instances or objects. In this case, it is called an abstract

class. Graphically, the class is represented in the form of a rectangle, which

can additionally be divided into sections by horizontal lines. These sections can

specify the class name, attributes, and operations.

Mandatory element of class designation is its name. A class name must

be unique within a package described by some set of class diagrams. It is

indicated in the first upper section of the rectangle. It is recommended to use

nouns written without spaces as class names. It is necessary to remember that

it is the names of the classes that will form the dictionary of the subject area.

Examples of class names can be such nouns as "Employee", "Company",

"Manager", "Client", "Seller", "Manager", "Office" and those that are directly

related to the subject area and functional purpose of the designed systems.

In the second section from the top of the class rectangle, its attributes are

recorded. Each class attribute corresponds to a separate line of text consisting

of the attribute's visibility quantifier, the attribute's name, its multiplicity, the

attribute's value type, and possibly its output value.

The visibility quantifier can take one of three possible values:

1. Public. An attribute with this scope is accessible from any other

package class in which the chart is defined.

2. Protected. An attribute with this scope is not available to all classes

except subclasses of this class.

3. Closed (private). An attribute with this scope is not available to all other

classes without exception.

An attribute name is a string of text that is used as an identifier for the

corresponding attribute and must therefore be unique within that class. The

attribute name is the only required element of the attribute syntax.

The multiplicity of an attribute is characterized by the total number of

specific attributes of a certain type that are part of a separate class.

An attribute type is an expression, the semantics of which is determined

by the specification language of the corresponding model. In UML notation, the

attribute type is sometimes defined depending on the programming language

that is intended to be used to implement that model. In the simplest case, the

attribute type is indicated by a string of text that has a meaningful meaning

within the package or model to which the class in question refers.

Class operations are recorded in the third section from the top of the

rectangle. An operation is some service that provides any instance of a class

on a certain request. The set of operations characterizes the functional aspect

37

of class behavior. Each operation of the class corresponds to a separate string

consisting of the operation visibility quantifier, the name of the operation, an

expression of the type returned by the operation.

An operation name is a string of text that is used as an identifier for the

corresponding operation and must therefore be unique within that class.

In addition to the internal organization or structure of classes, the

corresponding diagram indicates various relationships between classes. At the

same time, the set of types of such relationships is fixed in the UML language

and defined by the semantics of their types.

The basic relations in the UML language are:

1. Dependency relationship.

2. Association relations.

3. The relation of generalization.

4. Realization relationship.

Recommendations for the development of a UML activity diagram

(Activity Diagram), which reflects the basic business logic of the software

system.

Activity diagrams are used to show the flow of control in a system and

the steps involved in executing a use case. Using activity diagrams, you can

model sequential and parallel activities. An activity diagram focuses on the

conditions and sequence of execution of some flow.

An activity diagram depicts the flow of control from a start point to an end

point, showing the different decision paths that exist during the execution of an

activity. It is used to model the workflow taking into account conditions,

constraints, sequential and simultaneous actions.

To develop an activity chart, you need to determine:

1. Initial state and final state.

2. Intermediate actions necessary to reach the final state from the initial

state.

3. Conditions or constraints that prompt the system to change control

flow.

Clause 3.2.3. File structure of the software product (application)

project

In this point, it is necessary to outline the content of the file structure of

the developed software product, that is, to describe the purpose of the folders

and files that make up the source code of the project.

38

The structure is presented in the form of lists, where each item defines a

separate structural unit and provides a description of the purpose and content

of this unit. If the software product has a distributed architecture (for example,

client-server), then the structure of its client and server parts is given

separately. It is recommended to start with the folder structure of the project

(part of the project), which can be depicted in the form of a "tree". And, further,

display the contents of the folders in the form of lists.

An example of a description of the contents of the folder:

The config folder contains the following files:

- .editorconfig — configuration file of the working IDE on which the project

was executed;

- .eslintignore — exception configuration file for the es-lint plugin;

- .eslintrc — es-lint plugin rule configuration file;

- .gitignore — exception configuration file for the version control system;

- .prettierrc — prettier plugin rules configuration file;

- package-lock.json — technical information about installed project

modules;

- package.json — a list of project dependencies and supporting scripts.

Subsection 3.3. Data model design

The initial data for designing a data model are:

description of the functional scheme of the enterprise (if available) for

which the project is being implemented;

identification of the place and functions of a specific unit in the structure

of the entire organization (enterprise);

description of information processing technology within the framework of

this subject area of a specific unit with an indication of input and output

information, tasks to be solved, functions and work regulations of information

processing executors, frequency of performing information processing

functions;

analysis of available means of automation of information processing

within the framework of this subject area (hardware and software, DBMS);

substantiation of the necessity and possibility of developing an

information processing automation module and a database of this module as a

constituent element of the organization's general data infrastructure;

39

analysis and description of tasks that are automated in the module

(subsystem) being developed.

The logical data model (logical data model) defines: a set of supported

types of data structures; set of valid operations on supported data structures;

a set of general data integrity rules that explicitly or implicitly determine the

correct state of the database or their changes;

The database consists of two parts: transactional and analytical. The

characteristic features of the transactional part are:

1) relational structure (mainly);

2) the possibility of accumulating significant volumes of actual data;

3) the possibility of adding, deleting, editing records;

4) no aggregated (calculated) data;

5) is used to perform various accounting operations;

6) is the basis for the development of the analytical part of the database.

The analytical part of the database is used in the process of operational

analysis of information and development of models for decision support

systems. The characteristic features of the analytical part of the database are:

1) multidimensional structure (support of MOLAP, ROLAP, HOLAP

models);

2) storage of aggregated data;

3) the absence of the possibility of performing data deletion and editing

operations and their accumulation, mainly according to chronology.

In the process of developing the transactional part of the database, you

can use structural or object-oriented modeling, using appropriate CASE tools:

ErWin Data Modeler, IBM Rational Software, etc. When building a data

warehouse, it is necessary to justify the choice of storage model (MOLAP or

ROLAP cubic model: "star" or "snowflake").

If the topic of the diploma project is related to the creation of complex

transactional databases for the information system, it is recommended to

include the design of conceptual, logical and physical data models in this unit.

In other cases, you can limit yourself to the design of conceptual and logical

data models.

Clause 3.3.1. Conceptual infographic design

In this section, the construction of a database-independent data model is

performed, which includes the creation of a data dictionary and a global

informational data model.

40

Data dictionary. On the basis of the analysis of incoming and outgoing

documents, a model is built for mapping the set of details of the outgoing and

incoming documents to a set of data elements to be stored in the database,

then the collected information is brought to a form convenient for design. For

this, a data dictionary is compiled (Table 16).

41

Table 1 6

Data dictionary

No

for/p

Name

element
Identifier Type and length

Appointment

element

Data elements of the dictionary are listed in alphabetical order under the

"Name of the element" column in order to further remove homonyms and

duplicate elements. If the dictionary contains many items, it is moved to the

application. In the "Element assignment" field, you must specify whether the

storage element is actual or calculated.

During the design of a global informational data model, it is necessary to

identify equivalent entities and their merger, identify categories and synthesis

of generalizing entities, identify and eliminate duplication of attributes and

relationships. A graphical representation of the global model is built in the form

of ERD (IDEF1X notation), class diagram or other notations.

For all entities of the developed system, specifications of integrity

constraints and operational rules should be given, namely:

1) limitation of entity attributes (Table 17);

2) restriction of tuples;

3) limitation of uniqueness;

4) dynamic limitations;

5) other restrictions;

6) operational rules;

7) referential integrity rules.

Table 17

Restrictions on entity attributes

No.

for/p

The name of the

attribute or

aggregate

Limits /

permissible

values

Structure

(format)
Condition Default value

Clause 3.3.2. Designing a logical (physical) data model

42

The design of the logical data model includes: a graphical representation

of the logical model in the form of an ERD (in IDEF1X notation), class diagrams,

etc.

Justification of the properties of the base model data includes: a

description of the means, tools, and methods used to ensure the following

properties of the database: functional completeness; minimal redundancy;

database integrity (table, referential integrity, provided by keys and triggers,

etc.); consistency; topicality; security; renewability; logical and physical

independence; efficiency.

For the case of using relational DBMS, a logical model is presented in

the form of an ER diagram, which includes entities (tables), attributes (columns

/ fields) and relations (keys). If ORM technology is used, the ER diagram is

replaced by a class diagram, which represents the classes that represent the

data model. When using a NoSQL DBMS (for example, MongoDB), a data

schema for collections and relationships between collections, if any, are

provided.

Subsection 3.4. Protection of information

The information protection unit involves the development of elements of

the security policy for the information system and the software product being

developed. The information system security policy should include the following

items:

List of resources and circulating information (data) that are critical

(confidential) for this information system. Each resource or information should

be accompanied by a brief justification of why it should be classified as

confidential data. Information covered by the following laws should be

highlighted here:

the Law of Ukraine "On Information", which defines the concept of

confidential information [40];

the Law of Ukraine "On the Protection of Personal Data", which defines

what personal data is and regulates the rules of its processing [40];

the Law of Ukraine "On Banks and Banking Activity", which regulates the

rules for using banking information [41].

The list of confidential information circulating in the IS is recommended

to be drawn up in the form of tables (see Tables 18 - 19). For each type of

information, indicate the business processes in which it is used, and in the

"justification" column, indicate why it should be classified as confidential

information.

43

Table 18

List of confidential information circulating in the system

Names of information
The name of the business process in

which it is used
Justification

Table 19

List of critically important information system resources

The name of the

resource

The name of the business process in

which it is used
Justification

1. List of persons having access to confidential information circulating

in the information system. In this point, the access rights to the database

resources for each user, methods and types of access to the information

system network resources should be described, as well as the availability of

the resource from the Internet. In terms of availability of resources on the

network and the Internet, the necessary ports and protocols required for the

proper functioning of the resource must be specified.

The list of persons who process confidential information should be

presented in the form of a table (see Table 20). To reduce the number of lines,

you can group information that has the same access rights.

Table 20

List of users who have access to confidential information and critical

resources

IS user

Confidential

information or

resource

Access rights

Readi

ng

Re

cor

d

Ren

ewa

l

Rem

oval

Archi

ving

Resto

ration

Administrator Database passwords + + + - + +

44

2. Analyze the information system from the point of view of a

cryptanalyst. Identify the weak components of the system and form a list of

possible security threats. Security threats should be classified in relation to

basic security services, such as: confidentiality, integrity, availability,

involvement, observability, authenticity, etc. The list of threats is presented in

the form of table 21.

Table 21

List of information system security threats

The name of the

threat

Where it occurs

(business process,

resource)

To which resource or

information is

directed

Which security

service is violated

3. In Table 19, for each threat, the purpose of the threat and the

possible place of occurrence / penetration of the threat should be indicated.

The goal of the threat may be certain system resources, the operation of which

may be disrupted in cases of its passage. This is done for the possibility of

assessing the damage caused, as well as for the correct choice of protection

mechanisms. The point of origin / penetration is a system resource or business

process in which a threat can occur or through which a threat can penetrate.

The identification of such thin places in the IS will allow to reasonably apply

security mechanisms for the relevant system resources.

4. Determine with respect to each security mechanism, by what

means it can be implemented and what threats it is aimed at blocking.

Protection means are defined as specific software products or specialized

service functions of the OS, Web servers, databases. The list of security

mechanisms and means of protection is presented in the form of table 22.

Table 2 2

List of security mechanisms covering IS security threats

Safety mechanism A means of protection Security threat

45

5. Give a detailed description of the means of protection used in the

software product being developed. It should be noted here the cryptographic

protection methods used, user authentication methods, the way passwords are

stored in the system, authentication tools when connecting to the database,

the use of secure SSL protocols, and so on.

6. For systems designed for many users, it is necessary to consider

the possibility of implementing a monitoring security service in the form of

logging of the main actions of the user when working with the database and

the main events of the system, such as connecting to the database, logging in

and out of the user, etc.

Section 3.5. The process of CI continuous integration and

continuous delivery of CD software or its components

This subsection addresses the CI/CD processes that apply to software

that has been designed and developed. The content and structure of this unit

can be adjusted depending on the specific project in agreement with the head

of the diploma project.

The method of continuous integration (continues integration, SI) requires

the developer to periodically commit code changes to the GIT version

repository. It is recommended to publish edits at least once a day. The

approach helps to more easily and quickly detect errors and other problems

with the quality of development, to eliminate them in a timely manner, without

delay in the main processes. The goal of using continuous integration is to

provide a consistent and automated way to build and test your application.

Continuous Delivery (Continue Delivery automates the process of

implementing the application and making changes to the code, to the prepared

server infrastructure. Developers create software using environments suitable

for certain stages of work. The key feature of the software is the automation of

the process of delivery of changes for all used environments and the

implementation of necessary additional mechanisms (for example: sending a

request to the server, executing SQL queries, setting messages or restarting,

etc.).

CI / CD tools. The idea of continuous integration is based on the use of

tools that support this process. One of them is the source code management

system (SCM). The software is used to track changes in the source code, helps

development teams to combine changes made by different developers

(systems – Bitbucket, Github, GitLab).

46

Other tools are systems supporting creation, testing and implementation

in continuous integration mode (systems – Gitlab CI, Jenkins, CircleCI, Travis

and others).

The development process begins with choosing a branching strategy in

Git. A branching strategy is an important working tool during software

development. There are several main strategies:

GitHub Flow;

GitFlow;

Forking Workflow;

GitLab Flow;

Trunk Based Development.

As part of these strategies, it is necessary to accept which branches will

be used, for what purposes, how often the code will be merged, when the

release will be formed, which additional concepts can still be used. For this, a

list of types of branches is compiled (Table 23).

Table 23

Data dictionary

No

Branch name / template Appointment

Frequency of

integration

Infrastructure.

In the work, it is necessary to justify the choice of the type of infrastructure

local (On-Premise) or cloud (Cloud) according to the main factors that have the

greatest influence on the choice of solution (see tab. 24).

Table 2 4

Key factors of on-premise or cloud infrastructure

Factor
Local environment

(on-premise)
Cloud environment

(cloud)
What needs to be

done

1 2 3 4

costs are responsible for the
ongoing costs of server
hardware, power and

space.

you only need to pay for
the resources you need,
without any maintenance
and upkeep costs, and

the price adjusts
depending on how much

capacity is consumed

you need to calculate
infrastructure support

costs and average
daily, monthly and
quarterly resource

consumption for each
environment: DEV,

QA, PROD

47

control and
security

the business stores all its
data and has complete

control over what
happens to it. Due to

special privacy
requirements,

companies/organizations
from highly regulated
industries are often

reluctant to move to the
cloud.

many companies and
suppliers are concerned
with the problem of data

ownership;
data and encryption keys

reside with your third-
party provider and if the

unexpected happens and
there is downtime, there
is a chance that you will

not be able to access this
data in time

identify infrastructure
components such as

transmission
channels, data
processing and

storage services;
specify the relevant

data protection
requirements in these

components
(confidentiality,

integrity, availability,
observability);

provide security
mechanisms that

ensure these
requirements

realization The company is
responsible for

supporting the solution
and all related processes

Resources are placed on
the territory of the service
provider, a private, public

or hybrid cloud

Describe which
resources are hosted
(virtual machines with
different operating
systems and their
characteristics), which
servers or clusters are
used (Docker Swarm,
Kubernetes)

48

The end of the table. 2 4

1 2 3 4

regulatory
requirements

for government
companies, as well as
for a number of
businesses whose
industry and regulatory
documents are strictly
regulated, it is very
important that data
storage clearly meets
the requirements of the
law.

must exercise due
diligence and ensure that
their third-party supplier
complies with all the
various regulatory
requirements in their
industry;
Confidential data must be
protected and the
confidentiality of
customers, partners and
employees must be
ensured;
A service-level agreement
is important to ensure that
the parties, the supplier
and the customer,
understand a single
standard of service and
services, including
accessibility requirements.

to analyze the
regulatory
requirements
imposed on your
type of
company/organizati
on regarding data
storage rules, for
this it is necessary
to be guided by
national and
international laws
and legal acts such
as the Law of
Ukraine "On the
Protection of
Personal Data", the
General Data
Protection
Regulation (GDPR
) and others.

The project should consider how infrastructure is built for each

environment. Show which part of the infrastructure will be created and

maintained by the DevOps team, that is, will form the platform, and which part

will be configured in accordance with the deployment of software services,

which is influenced by the team of developers and testers. The platform can be

provided either by a Cloud provider or deployed on local infrastructure. One or

more infrastructures to be used for the respective environment should be

justified.

IaaS (Infrastructure-as-a-Service). According to this model, the

consumer receives information and technological resources - virtual servers

with a certain computing power and memory volumes. All the "hardware" is

handled by the provider. It installs software on it to create virtual machines, but

does not install and maintain user software. The provider controls only the

physical and virtual infrastructure. Examples of IaaS: IBM Softlayer, Hetzner

Cloud, Microsoft Azure, Amazon EC2, GigaCloud, GCP, and for local

infrastructure Huper-V Windows Server, KVM Ubuntu Server, Cent OS Server,

Debian and others.

PaaS (Platform-as-a-Service) – in this case, the cloud provider provides

access to operating systems, development and testing tools, and database

49

management systems. The provider controls not only servers, data storage

systems and computing power, but also offers the user a choice of certain

platforms and tools for managing them. Examples of PaaS: Google App

Engine, IBM Bluemix, Microsoft Azure, VMWare Cloud Foundry, and for local

infrastructure deployment of various clusters as a platform: cluster databases,

cluster web servers.

Containers-as-a-Service (CaaS) – virtualization of computing power,

resources and tools in one container. The service also allows you to manage

components using a virtual environment. Examples of CaaS: Docker, Podman,

Containerd, LXC, Docker Swarm, Kubernetes.

SaaS (Software-as-a-Service) is when applications and services are

developed and maintained by a provider, placed in the cloud and offered to the

end user through a browser or an application on his PC. The client only pays

the subscription fee (or uses the service free of charge), updating and technical

support of programs is handled by the provider. Examples of SaaS: file storage

(S3, Dropbox, Google Disk, One Drive), office document package for work

(Google Doc, Microsoft Office 365).

Properties such as cost of ownership and operation, performance,

scalability, availability, reliability, scalability, security, management and

monitoring should be considered when choosing an infrastructure.

Table 25

Characteristics of infrastructures

No

Infrastructure

property
Appointment

Type of

infrastructure

The

environment in

which it will be

used

The next step is to consider the types of environments and provide their

description, such as the local environment of the developer (local environment

or work environment), the development environment (DEV ENV), the testing

environment (QA environment) and the production environment (production

environment).

The developer's local environment is the developer's workstation on

which the developer works directly and on which all the necessary components

are installed to support the development process. These can be

50

implementations, IDEs, plugins for IDEs, servers, a set of libraries, text editors,

and other development tools.

A QA Environment, also known as a test environment, is a test setup

consisting of firmware, software, hardware, and related network configuration.

All tests are performed on this test bench, which contains all the infrastructure

necessary for conducting tests.

A production environment is the location where software or products have

been put into operation for use by intended users. When something goes into

production, all bugs should already be fixed and the product or update should

work perfectly.

For each environment, it is necessary to describe all services that will be

deployed on the basis of the selected infrastructure and their characteristics

(settings). The description of environments is given in table. 26.

Table 26

Characteristics of environments

No

Environment Service End points Appointment

DevOps pipeline .

A DevOps pipeline is a set of automated processes and tools that enable

developers and operations professionals to work together to build and deploy

code in a production environment. While the DevOps pipeline can vary by

organization, it typically includes build automation/continuous integration,

automated testing, validation, and reporting. It may also contain one or more

manually operated gates that require human intervention before the code can

proceed.

Each project has its own set of technologies that can affect the process.

The conveyor can be represented in the form of a diagram in Fig. 1.

51

Fig. 1. An example of the stages of the DevOps pipeline.

Although each pipeline is unique, most projects use similar fundamental

components. Each step is evaluated for success before proceeding to the next

stage of the pipeline. In the event of a failure, the pipeline stops and feedback

is provided to the developer.

In the project, you need to describe each stage of the pipeline that you

consider necessary for the deployment of your application. Describe scripts,

settings of relevant tools, provide instructions for launching the DevOps

pipeline. All these settings can also be stored in the corresponding Git

repository. To build a DevOps pipeline, such systems as: Jenkns, GitLab CI,

GitHub Actions can be used. Corresponding scripts should be added to the

annexes of the diploma project.

SECTION 4. SOFTWARE TESTING

The purpose of Section 4 is to create the documentation required for

software testing and analysis of test results, including checklists, test cases,

test data sets, as well as defect reports and test results reports. Taking into

account the topic of the diploma project and upon agreement with the

supervisor, the results of other types of testing may be presented in this

section.

Subsection 4.1. Creation of checklists

Checklists for smoke testing and critical path testing should be compiled

in this section. A checklist is a list that contains the necessary checks (test

cases) during software testing. Purpose of the checklist:

1. Do not miss the necessary tests.

2. Divide tasks according to skill levels.

52

3. Keep reports and test results.

Clause 4.1.1. Checklist for smoke testing

Smoke testing (Smoke test) is aimed at checking the most important, the

most important, the most key functionality, the failure of which makes the very

idea of using the software pointless. A deeper test should not be conducted

until the smoke tests are 100% complete!

To create a checklist for smoke testing, you need to determine:

what your software is for;

what are the most obvious simple steps to take to get into it;

what are the minimum important steps and in what sequence should be

performed to achieve the goal.

A checklist for smoke testing is created in the table (Table 27).

Table 27

Checklist for smoke testing

Numb
er

Description
<Environment>

Status Comment

1

2

. . .

The list of tests should be minimal - up to 10-15, and be linear, without

hierarchical arrangement.

Validation environment. As a rule, several columns intended for testing

on a separate platform are added to each checklist. The name of these

columns indicates the name of the device, browser and its version, etc.

During testing, the status is indicated against each test item in the

checklist. Examples of statuses are given in the table. 28.

Table 28

Test statuses

No Satus Comment

1 2 3

1 Passed The check was passed successfully, no bugs were found

2 Failed/ Unsuccessful One or more bugs found

53

3 Blocked/ Blocked Unable to verify because one of the bugs is blocking the current

verification

4 Not run Not yet verified

5 Skipped There will be no verification for any reason. For example, the

current functionality is not yet implemented.

6 In Progress The current item the tester is working on

Based on the created checklist, it is necessary to check the created

software. In the process of passing the tests, change the status of the test in

accordance with the table. 12. When detecting defects, insert a note to the

corresponding item with a link to the page with the bug. All errors found during

this testing phase must be corrected!

Clause 4.1.2. Checklist for critical path testing

Critical path testing aimed at investigating the functionality used by typical

users in typical daily activities. There is a majority of users who use some

subset of the program's features most often. It is these functions that need to

be checked after smoke testing. If for some reason the program does not

perform these functions or performs them incorrectly, many users will not be

able to achieve many of their goals. The threshold value of successfully

passing the critical path test is lower than in smoke testing, but still quite high

(usually, about 70-90% - depending on the nature of the project).

To create a checklist for testing the critical path, it is necessary to

determine the main steps in working with the software that most users perform

to achieve the main goal of its use, and then write down the sequence of

actions that must be performed at each step.

A checklist for testing the critical path is created in the table (Table 29).

Table 29

Checklist for critical path testing

Number Description Status Comment

1

1.1

1.2

. . .

2

2.1

. . .

Subsection 4.2. Creation of test cases

54

To test the critical path, test cases must be developed in accordance with

the checks specified in the checklist. The description of test cases for testing

the critical path should be submitted in the table according to the template

(Table 30).

Table 30

Template for creating test cases

No Require
ment No

Name Priority Description of the
test case

Expected
result

Comment

Requirements for the content of the test case.

Identifier.

Unique.

Meaningful (if the software allows).

A requirement related to the test case.

Indicates the main requirement for which the test case was created.

The presence of this field improves such a property of the test case as

tracking.

Name (essence) of the test case

It is designed to simplify the quick understanding of the main idea of the

test case without referring to its other attributes.

This field is most informative when viewing a list of test cases.

Each test case should always have a name! Test cases without names

are absolutely not allowed under any circumstances!

Priority.

Shows the importance of the test case.

Can be expressed by letters (A, B, C, D, E), numbers (1, 2, 3, 4, 5), words

("extremely high", "high", "average", "low", "extremely low") or in another

convenient way.

May correlate with:

the importance of the requirement;

the potential importance of the defect, which the test case is aimed at

finding.

The description of the test case contains:

input data required to execute the test case.

55

They allow to describe everything that must be prepared before the start

of the test case execution, for example, the state of the database, the state of

the file system and its objects, and so on.

Everything described in this field is prepared without the use of a test

program: if there are problems here, you cannot write a software defect report;

test case steps.

The steps of the test case describe the sequence of actions that must be

implemented during the execution of the test case, and are numbered.

Expected results.

The expected results for each step of the test case describe the reaction

of the program to the actions described in the steps of the test case. The step

number corresponds to the result number.

Section 4.3. Creating input data sets for testing

For test cases that check the operation of the software with input data

sets, you need to create a test set for data input based on equivalence classes

and boundary conditions.

An equivalence class is a set of data that is processed in the same way

and leads to the same result.

Boundary conditions are places (values) in which one equivalence class

passes into another.

Signs of equivalence of test cases:

test cases are aimed at finding the same error;

if one of the test cases detects an error, the others will most likely detect

it too;

if one of the test cases does not detect an error, the others most likely

will not either;

test cases use similar sets of input data;

for creating test cases, the same operations are performed;

test cases generate the same output or bring the software to the same

state;

all test cases trigger the same error handling block ("error handling

block");

none of the test cases causes the error handling block to trigger.

Equivalence classes must be specified when creating test data sets:

by field length: for unacceptable length and acceptable length;

by characters: for invalid and valid characters.

56

Based on the selected equivalence classes, determine data sets for

positive and negative testing. Submit the results in the table (Table 31).

Table 31

Data sets for testing

 Positive test cases Negative test cases

Value

Explanation

For positive test cases it is:

a line of minimum acceptable length;

string of the maximum allowable length.

For negative test cases it is:

string of unacceptable length beyond the lower limit;

line of unacceptable length beyond the upper limit;

a string of acceptable length with invalid characters

you can add string with invalid length / invalid characters for reliability.

Section 4.4. Defect report

Based on the results of software critical path testing, a defect report is

created based on a checklist, test cases, and data sets. Defect report - a

document that provides information about the expected and actual test results

and describes and determines the priority of the detected defect, as well as

contributes to its elimination. When a defect is detected, it is absolutely

necessary to copy a screenshot of the defect and insert it or a link to it in the

report's appendices (table 32).

Table 32

Defect report

Identifier Brief

descripti

on

Detailed

descripti

on

Steps of

reprodu

ction

Creativit

y

Importan

ce

Urgency Sympto

m

It was

possibl

e to

bypass

the

news

Comme

nt

Appendi

ces

A defect is a discrepancy between the expected and the actual result.

57

The expected result is the behavior of the system described in the

requirements.

The actual result is the behavior of the system, which is observed during

the testing process.

Requirements for the content of the defect report.

Identifier.

- Unique.

- Meaningful (if the software allows).

Brief description.

In a concise form, it gives a comprehensive answer to the question "What

happened?" "Where did it happen"? "Under what conditions did this happen?"

For example, "missing logo on welcome page if user is an administrator."

Detailed description.

Provides detailed information about the defect, as well as (required!)

- description of the actual result,

- description of the expected result,

- link on request (if applicable).

Playback steps.

Describe the actions that must be performed to reproduce the defect.

This information in the defect report is extremely important. It allows the

developer to quickly reproduce and eliminate the problem.

Reproducibility.

Shows whether the defect is reproduced always ("always") or only

sometimes ("sometimes"). Defects that are always reproduced are much

easier to diagnose and fix.

Recommendation : reproduce your steps at least 2-3 times before writing

that the defect is always reproduced. To prove that the defect exists is the task

of the tester! Therefore, as soon as a defect is detected, make a copy of the

screen. Even if you yourself will no longer be able to reproduce this defect,

perhaps colleagues will understand what is the matter from the resulting

picture.

Importance.

Shows the degree of damage caused to the project by the existence of a

defect. Typical values:

Critical. These are the worst defects that lead to application or operating

system crash, serious database corruption, web server or application server

crash.

58

High (major). Serious defects, such as: loss of user data, crash of a

significant part of the functionality of the application, crash of the browser or

other client, etc.

Medium (medium). Defects affecting a small set of program functions. As

a rule, such defects can be "bypassed", i.e. perform the necessary actions in

another way, which does not lead to the occurrence of the defect.

Low (minor). Defects that do not directly interfere with the operation of

the software. As a rule, this includes all kinds of cosmetic defects, errors, etc.

Urgency.

Shows how quickly the defect should be eliminated. Typical values:

Highest (ASAP, as soon as possible). Assigned to a defect, the presence

of which makes it impossible to continue working on the project or transfer the

current version of the project to the customer.

High (high). Assigned to a defect that needs to be fixed as soon as

possible.

Normal (normal). Assigned to a defect that should be fixed in the order of

the general queue.

Low (low). Assigned to the defect that should be dealt with last (when

and if there is time left).

Symptom.

Allows to classify defects according to their typical manifestation. Typical

symptom values:

cosmetic defect (cosmetic flaw);

damage / loss of data (data corruption / loss);

documentation issue;

incorrect operation (incorrect operation);

installation problem (installation problem);

localization issue (localization issue);

unimplemented functionality (missing feature);

the problem of scalability (scalability);

low performance (slow performance);

system crash (system crash);

unexpected behavior (unexpected behavior);

unfriendly behavior (unfriendly behavior);

variance from specs;

proposal for improvement (enhancement).

Ability to bypass.

59

Shows whether there is an alternative sequence of actions, the

implementation of which would allow the user to achieve the set goal

(bypassing the occurrence of the defect).

Comment.

It can contain any data useful for understanding and correcting the defect.

Appendices.

Contains a list of applications attached to the defect report (crashing

screenshots, files, etc.).

Section 4.5. Test results report

In this subsection, it is necessary to summarize the results of the test in

the form of a report, which contains:

1. Brief description. In an extremely concise form, it reflects the main

achievements, problems, conclusions and recommendations based on the

results of testing. For example, during the reporting period, 100% of test cases

of smoke testing and XX% of test cases of critical path testing were

successfully completed, XX% of high importance tests were implemented

correctly, etc.;

2. Description of the testing process. Description of the tasks that were

completed during the reporting period. This describes the environment in which

testing was performed (OS, software environments, etc.), how certain types of

testing were performed (manual or automated), whether retesting was

performed and what its result was;

3. Statistics on defects. The statistics are presented in the form of a table

, which presents data on the defects detected throughout the project (with

classification by stages of the life cycle and importance) (Table 33). This

section also contains a graph showing the number of defects found (total and

by importance) by time periods;

Table 33

Statistics on defects

Status the total number of

Number by importance

low average High Critical

Found

Corrected

60

Checked

Reopened

rejected

4. Recommendations. Reasoned conclusions about the obtained results

and, if necessary, recommendations for a further strategy for improving the

quality of the software are presented.

61

5. Procedure for submission to defense and defense

diploma project

5.1. Advance protection diploma project

In order to identify the applicant's readiness for defense, a preliminary

defense of the diploma project is carried out. Preliminary protection consists of

two parts:

a report with a presentation of a fully completed project;

demonstration of the software product.

The purpose of the preliminary defense is to check the applicant's

readiness for the defense in accordance with the requirements of the

graduation department, to evaluate the scope of the submitted project and the

quality of its execution and design. Regardless of the degree of readiness of

the project, the acquirer must appear for the preliminary defense.

For the preliminary defense, the graduation department determines the

composition of the commissions and draws up the preliminary defense

schedule.

The following are submitted for preliminary protection:

completed and timely approved task;

a fully prepared, but not bound, explanatory note with the signatures of

the applicant, manager and consultants on the assignment;

finished software product and a video clip of its operation;

report plan and presentation, agreed with the manager.

On the basis of the applicant's report, his answers to the questions, the

results of the inspection of the explanatory note, the presentation, the

commission determines recommendations to the applicant regarding:

reports;

answers to questions;

content of the explanatory note;

drawing up an explanatory note;

presentations;

software product demonstrations.

Admission to the defense is possible in case of a positive assessment of

both types of preliminary defense (explanatory note; program part). Applicants

who have not passed the preliminary defense are not allowed to the defense.

62

5.2. Submission of the diploma project for defense

After the preliminary defense and elimination of deficiencies with the

completed diploma the project is submitted to the project manager. He finally

checks the compliance of the completed work with the task and the relevant

requirements, prepares a submission (written feedback), in which he gives a

description of the work of the applicant .

Completed diploma the project , signed by its manager, is subject to

regulatory control. After regulatory control , the diploma project is signed by the

head of the department, the diploma project is sent for review.

5.3. Defense of the diploma project

No later than a day before the defense, the applicant submits the diploma

project to the secretary of the State Examination Commission (SEC). A

handout on the work performed for each member of the DEC, which contains

a printout of the presentation slides, is mandatory.

Other materials that characterize the scientific and practical value of the

completed thesis can be submitted to the DEC project , namely:

printed articles on the topic of work;

documents that characterize the practical value of the development of the

acquirer ;

documents indicating the practical application of the work (signed by

officials);

layouts, product samples, etc.

Protection of diplomas projects is held at a meeting of the DEC.

Defense of one diploma the project should preferably not exceed 30

minutes. The applicant is given no more than 10 minutes to give a report on

the project .

The defense of a complex diploma project is, for the most part, planned

and conducted at one meeting of the DEC, and the student who defends first

is instructed to report both on the general part of the work and on the individual

part with an increase (if necessary) in the time for the report. All applicants who

performed complex work must be fully aware of the general part of the work

and be ready to answer questions from the commission members not only

about the individual, but also about the general part of the work.

63

The applicant's report should consist of three main parts, namely:

introduction, main part and conclusions.

In the introduction, it is necessary to note the relevance of the project

topic, give a general analysis of the state of the problem and formulate the main

tasks, the solution of which was connected with the implementation of the

project.

In the main part of the report, in a concise form, it is necessary to provide

a report on the content of the completed developments, show the effectiveness

of the adopted technical solutions, and provide a brief report on the results

obtained.

In the final part of the report, it is necessary to draw general conclusions

and give recommendations regarding the possible scope of application of the

design object, list publications by the topic of the work, provide information on

implementation.

The report must be accompanied by links to the electronic presentation,

which is shown by the applicant . The presentation should contain the following

slides:

title slide with initial data on the diploma project;

content of the presentation (with links to relevant slides);

the relevance of the topic and the purpose of the diploma project;

a model of the organizational structure of the enterprise, a division of the

enterprise;

business process management model;

UML diagram of use cases;

wireframe or mockup of the user interface project;

mathematical (logical) statement;

filled out forms of outgoing and incoming documents, diagrams, maps;

logical and physical models of the database;

UML-diagram of classes (Class Diagram), which implement the basic

business logic of the software system, or UML-diagram of activity (Activity

Diagram), which reflects the basic business logic of the software system;

UML-diagram of states (State Diagram), in which elements of the

graphical user interface can be located;

the results of software testing and its security testing;

used tools and technologies;

conclusions based on the results of the diploma project;

approval of the results of the diploma project;

64

final slide.

Demonstration material in the form of a video may be additionally used

during the defense.

After the report , the winner briefly answers the questions of the EC

members. Then the review is read. The student is given the opportunity to

respond to the reviewer's remarks.

After the defense of all declared winners, the commission conducts a

closed discussion of each defense and evaluates it according to the evaluation

criteria. At the same time, the level of the work performed and the developed

software product, the quality of the design of the explanatory note, the level of

scientific, practical and theoretical training of the applicant , the rhythm of work

on the project, the presence of publications, speeches at conferences, etc. are

taken into account.

of the diploma defense project are brought to the attention of the

acquirers after the completion of the work of the DEC.

65

Recommended Books

The main

1. Бородкіна І.Л. Інженерія програмного забезпечення : навч.

посіб. / І.Л. Бородкіна, Г.О. Бородкін. - Київ. : ЦУЛ, 2019. - 204 с.

2. Козак О.Л. Опорний конспект лекцій з курсу «Аналіз вимог до

програмного забезпечення» для студентів напрямку підготовки

«Програмна інженерія» / О.Л. Козак. – Тернопіль, 2021. – 56 с.

3. Кучеров Д.П. Інженерія програмного забезпечення :

навчальний посібник / Д.П. Кучеров, Є.Б. Артамонов. - Київ. : НАУ, 2017. -

386 с.

4. Проектування інформаційних систем: Загальні питання теорії

проектування ІС (конспект лекцій) [Електронний ресурс]: навч. посіб. для

студ. спеціальності 122 «Комп’ютерні науки» / КПІ ім. Ігоря Сікорського;

уклад.: О. C. Коваленко, Л. М. Добровська. – Електронні текстові дані (1

файл: 2,02 Мбайт). – Київ : КПІ ім. Ігоря Сікорського, 2020. – 192 с.

5. Ушакова І. О. Лабораторний практикум з системного аналізу та

проектування інформаційних систем [Електронний ресурс] : навчальний

посібник / І. О. Ушакова, І. Б. Медведєва. – Харків : ХНЕУ ім. С. Кузнеця,

2022. – 251 с.

6. Бази даних : лабораторний практикум для студентів галузі

знань 12 "Інформаційні технології" першого (бакалаврського) рівня

[Електронний ресурс] / укл. В. В. Федько, В. П. Бурдаєв; Харківський

національний економічний університет ім. С. Кузнеця. - Х. : ХНЕУ ім. С.

Кузнеця, 2019. - 229 с.

7. Якість програмного забезпечення та тестування: базовий курс.

Навчальний посібник / За ред. Крепич С.Я., Співак І.Я. / для бакалаврів

галузі знань 12 «Інформаційні технології» спеціальності 121 «Інженерія

програмного забезпечення». – Тернопіль: ФОП Паляниця В.А., 2020. –

478 с.

Additional

8. Дейт К. Дж. Введення в системи баз даних / К. Дж. Дейт. – 6-е

вид. – Київ : Діалектика, 2020 - 1328 c.

66

9. ДСТУ 8302:2015 "Інформація та документація. Бібліографічне

посилання. Загальні положення та правила складання" - Київ :

Держстандарт України, 2016. — 16 с.

10. ДСТУ ISO 9000:2015. Системи управління якістю. Основні

положення та словник термінів: чинний з 01.07.2016 – Київ. : УкрНДНЦ,

2016. – 49 с.

11. ДСТУ ISO/IEC 25000:2016. Інженерія систем і програмних

засобів. Вимоги до якості систем і програмних засобів та її оцінювання

(SQuaRE). Настанова до SQuaRE: чинний з 01.01.2018. – Київ. : УкрНДНЦ.

12. ДСТУ ISO/IEC 25010:2016. Інженерія систем і програмних

засобів. Вимоги до якості систем і програмних засобів та її оцінювання

(SQuaRE). Моделі якості системи та програмних засобів: чинний з

01.01.2018. – Київ. : УкрНДНЦ.

13. ДСТУ ISO/IEC 25020:2016. Інженерія систем і програмних

засобів. Вимоги до якості систем і програмних засобів та її оцінювання

(SQuaRE). Рамкова модель і настанова щодо вимірювання: чинний з

01.01.2018. – Київ. : УкрНДНЦ.

14. ДСТУ ISO/IEC 25022:2019 (ISO/IEC 25022:2016, IDT) Інженерія

систем і програмних засобів. Вимоги до якості систем програмних засобів

та їхнього оцінювання (SQuaRE). Вимірювання якості під час

застосування. : чинний з 01.01.2020. – Київ. : УкрНДНЦ.

15. ДСТУ ISO/IEC 25023:2019. Інженерія систем і програмних

засобів. Вимоги до якості систем програмних засобів та їхнього

оцінювання (SQuaRE). Вимірювання якості систем та програмних

продуктів: чинний з 01.11.2019. – Київ. : УкрНДНЦ.

16. ДСТУ ISO/IEC 25040:2016 (ISO/IEC 25040:2011, IDT) Інженерія

систем і програмних засобів. Вимоги до якості систем і програмних засобів

та її оцінювання (SQuaRE). Процес оцінювання: чинний з 01.01.2018. –

Київ. : УкрНДНЦ.

17. ДСТУ ISO/IEC/IEEE 15939:2018. Інженерія систем і програмних

засобів. Процес вимірювання: чинний з 01.01.2019. – Київ. : УкрНДНЦ.

18. Життєвий цикл програмного забезпечення : навчальний

посібник / Є.В. Левус, Т.А. Марусенкова, О.О. Нитребич. - Львів. :

Видавництво Львівської політехніки, 2017. – 208 с.

19. Методичні рекомендації до оформлення звітів, курсових

проєктів та дипломних робіт (проєктів) для студентів спеціальності 121

"Інженерія програмного забезпечення", 122 "Комп'ютерні науки", 126

67

"Інформаційні системи і технології": [Електронний ресурс] / уклад.

І.О.Ушакова, Г.О. Плеханова, О.М. Беседовський. – Х. : ХНЕУ ім. С.

Кузнеця, 2021. – 48 с.

20. Ушакова І. О. Проектування інформаційних систем : Практикум

/ І. О. Ушакова. – Харків : Вид. ХНЕУ ім. С. Кузнеця, 2015. - 250 с.

21. Developing Information Systems: Practical guidance for IT

professional / P. Thompson, D. Paul, A. Paul et al. – London : BCS Learning &

Development Limited, 2014. – 206 р.

22. ISO/IEC/IEEE: Systems and Software Engineering – Architecture

Description. ISO/IEC/IEEE 42010:2022. - [Electronic resource]. – Access

mode - http://www.iso-architecture.org/42010/index.html.

23. Lampathaki F. Business process modelling. Business process

reengineering // F.Lampathaki, S. Koussouris, J. Psarras. – Zografou : NTUA,

2013. – 89 p.

24. Standard glossary of terms used in Software Testing. Version 3.1.

All Terms [Electronic resource]. – ISTQB, 2024. – 82 р. – Access mode -

https://astqb.org/assets/documents/Glossary-of-Software-Testing-Terms-

v3.pdf

25. Wiegers K. Software Requirements Essentials: Core Practices for

Successful Business Analysis; 1st Edition / K. Wiegers, C. Hokanson. –

Addison-Wesley Professional, 2023.– 208 p.

Information resources

26. Інформаційний портал CRM [Електронний ресурс]. — Режим

доступу : https://www.crm.com.ua

27. Державна служба статистики України [Електронний ресурс]. —

Режим доступу : https://www.ukrstat.gov.ua/.

28. Спільноста розробників dou.ua [Електронний ресурс]. – Режим
доступу : https://dou.ua/.

29. Gartner, Inc. [Electronic resource]. — Access mode :

http://www.gartner.com/.

30. IBM [Електронний ресурс]. Режим доступу : —

http://www.ibm.com/ua-en.

31. Microsoft [Електронний ресурс]. — Режим доступу : http:

//www.microsoft.com/.

32. Agile alliance [Electronic resource]. – Access mode :

http://www.agilealliance.org.

http://www.iso-architecture.org/42010/index.html
http://www.gartner.com/

68

33. ITC Online [Electronic resource]. — Access mode : http://itc.ua/.

34. Object Management Group [Electronic resource]. – Access mode

: http://www.omg.org.

35. SCRUM [Electronic resource]. – Access mode :

http://www.scrum.org.

36. UML [Electronic resource]. – Access mode : http://www.uml.org/.

37. Try QA [Electronic resource]. – Access mode : http://tryqa.com/.

38. 10 usability heuristics for user interface design. - [Electronic

resource]. – Access mode - https://www.nngroup.com/articles/ten-usability-

heuristics/.

39. Про інформацію : Закон України від 02.10.1992 № 2657-XII:

станом на 21 березня 2023 р. - — Режим доступу :

https://zakon.rada.gov.ua/laws/show/2657-12#Text (дата звернення:

20.01.2024).

40. Про захист персональних даних: Закон України від 01.06.2010

р. № 2297-VI: станом на 27 жовт. 2022 р. — Режим доступу :

https://zakon.rada.gov.ua/laws/show/2297-17#Text (дата звернення:

20.01.2024).

41. Про банки і банківську діяльність: Закон України від 07.12.2000

р. № 2121-III: станом на 1 січня 2024 р. — Режим доступу :

https://zakon.rada.gov.ua/laws/show/2121-14#Text (дата звернення:

20.01.2024).

42. Regulation (EU) 2016/679 of the European Parliament and of the
Council of 27 April 2016 on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data, and
repealing Directive 95/46/EC (General Data Protection Regulation). – Режим
доступу: https://eur-lex.europa.eu/legal-
content/EN/TXT/PDF/?uri=CELEX:32016R0679 (дата звернення:
12.02.2024).

http://www.scrum.org/
http://www.uml.org/
http://tryqa.com/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679

69

Appendices

Appendix A

A sample of the student's application for approval of the topic of the
diploma project

To the head of the department
information systems
Associate Professor Bondarenko
D.O.
student of the 4th year <number>
of the group
<P. I. B student>

STATEMENT

Please approve the topic of the diploma project <Topic name>.

<Date> <Signature of the student> <P. I. B student>

Head
diploma project

<Position

of science degree, academic title> <Head's signature> <P. I. B. of the head>

70

Appendix B

The structure of the substantive part of the diploma project
of a practical nature

No.
z/p

The name of the structural element

1. ANALYSIS OF SUBJECT FIELD <NAME OF SUBJECT FIELD>

1.1. Definition of content of the subject area

1.2. Modeling of the subject area

1.3. Review and analysis of literary sources regarding existing solutions and
analogues

1.4. Positioning of the created software (application, module, system)

1.4.1. Business benefits

1.4.2. Problem definition

1.4.3. Definition of position

2. SOFTWARE REQUIREMENTS SPECIFICATION

2.1. Glossary

2.2. Development of use cases

2.2.1. Use case diagram

2.2.2. Specification of use cases

2.3. Specification of functional requirements

2.4. Specification of non-functional requirements

2.5. User interface design

3. DESIGN AND TECHNICAL SOLUTIONS

3.1. Justification of the architecture of the software system

3.2. Software design

3.2.1. Selection of means of project implementation

3.2.2 . UML class diagram (UML activity diagram)

3.2.3. File structure of the software product (application) project

3.3. Data model design

3.3.1. Conceptual infographic design

3.3.2. Designing a logical (physical) data model

3.4. Protection of information

3.5. The process of CI continuous integration and continuous delivery of CD
software or its components

4. SOFTWARE TESTING

4.1. Creation of checklists

4.1.1. Checklist for smoke testing.

4.1.2. Checklist for critical path testing

4.2. Creation of test cases

4.3. Creating input data sets for testing

4.4. Defect report

4.5. Test results report

71

Appendix C

FROM the title page of the diploma project

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

KHARKIV NATIONAL ECONOMIC UNIVERSITY

THE NAMES OF SEMEN KUZNETSYA

FACULTY OF INFORMATION TECHNOLOGIES

DEPARTMENT OF INFORMATION SYSTEMS

Level of higher education First (undergraduate)

Specialty Software engineering

Educational program Software engineering

Group <Group code>

DIPLOMA PROJECT

on the topic: "Topic name"

Performed by: student <Student's name SURNAME> ____________
(signature)

Supervisor: <academic degree>, <academic title> <First name SURNAME>
ЭОВ

(signature)

Reviewer: <position> <First Name SURNAME>

Kharkiv - 202_ year

72

Appendix E

Examples of essays

1. For research projects

ABSTRACT

Explanatory note to the diploma project: 81 pages, 34 figures,

6 tables, 2 appendices, 35 sources.

The object of research is the methods of mathematical modeling of

information systems.

The purpose of the work is to research approaches to the development

of simulation models of information systems functioning processes and

automation of the simulation modeling process.

As development methods, the analysis method for researching existing

modeling methods, the synthesis method for combining the advantages of

existing modeling methods, modeling methods for presenting and researching

the processes of functioning of information systems, the method of

comparative analysis for assessing the adequacy of the model of the

processes of information systems functioning were chosen.

As a result of the work, a rational approach to the development of

simulation models of the functioning of information systems was substantiated,

and a software tool for automating simulation modeling was developed, which

allows creating simulation models of the processes of functioning of information

systems and researching them.

The results of the research can be used in research institutions and

divisions of enterprises engaged in the development of simulation models.

INFORMATION SYSTEM, E-NETWORK, MODEL ADEQUACY, SIMULATION

MODEL, MATHEMATICAL SCHEME, SIMULATION METHODS

73

Continuation of Appendix E

ABSTRACT

The bachelor's thesis report: 81 pages, 34 figures, 6 tables,

2 appendices, 35 sources.

The object of the research is the methods of mathematical modeling of

information systems.

The purpose of the work is to research the approaches to the

development of simulation models of the functioning processes of information

systems and automation of the simulation process.

The research methods are analysis to research existing methods of

modeling, synthesis to unite the advantages of the available methods of

modeling, modeling to present and research the functioning processes of

information systems, comparison to estimate the adequacy of the models.

As a result of the work, a rational approach to the development of the

simulation models of the functioning processes of the information systems has

been substantiated. Also a software product has been developed, which helps

to create simulation models of the functioning processes of information

systems and research the models.

The results of the research can be used in research establishments and

the departments of enterprises which develop simulation models.

INFORMATION SYSTEM, E-NET, MODEL ADEQUACY, SIMULATION

MODEL, MATHEMATICAL SCHEME, METHODS OF MODELING

74

Continuation of Appendix E

ABSTRACT

Explanatory note for the diploma project: 90 pages, 30 figures,

20 tables, 12 appendices, 55 sources.

Design objects are functional elementb, architecture, information and

software of the module for monitoring warehouse deliveries of "SIGMA" LLC.

The purpose of the design is to create a module "Monitoring of

warehouse deliveries".

The design method is the use of software systems ARIS Toolset, IBM

Rational, Microsoft Visual Studio.

The created module makes it possible to increase the reliability of the

accounting of goods in the warehouse, the reasonableness and efficiency of

decision-making during the management of the supply of goods and their

stocks in the warehouse.

The results of the development can be implemented in commercial

enterprises.

SUPPLY CHAIN MANAGEMENT SYSTEM, OBJECT-ORIENTED DESIGN,

CASE DIAGRAMS, DATA BASE, WAREHOUSE DELIVERY MONITORING,

WEB SERVICE

75

End of Appendix E

ABSTRACT

The bachelor's thesis report: 90 pages, 30 figures, 20 tables,

12 appendices, 55 sources.

The objects of designing are functional elements, architecture and

software of a module which provides monitoring of warehouse supplies.

The purpose of designing is to create "The monitoring of warehouse supplies"

software module for Sigma Ltd.

The method of designing is using the ARIS Toolset, IBM Rational,

Microsoft Visual Studio software systems.

The advantage of the developed module is the increasing of reliability of

goods accounting, validity and timeliness of decision-making.

The obtained results can be applied at commercial enterprises.

SUPPLY CHAIN MANAGEMENT SYSTEM, OBJECT ORIENTED DESIGN,

CASE DIAGRAMS, DATABASE, MONITORING OF WAREHOUSE

SUPPLIES, WEB SERVICE

76

Appendix F

Sample content design

CONTENT

INTRODUCTION 6

1. ANALYSIS OF SUBJECT FIELD <NAME OF SUBJECT FIELD> 7

1.1. Definition of content of the subject area 7

1.2. Modeling of the subject area 10

1.3. Review and analysis of literary sources regarding existing solutions and

analogues 14

1.4. Positioning of the created software (application, module, system) 17

1.4.1. Business advantages 17

1.4.2. Definition of the problem 18

1.4.3. Definition of position 19

2. SOFTWARE REQUIREMENTS SPECIFICATION 20

2.1. Glossary 20

2.2. Development of use cases 21

2.2.1. Use case diagram 21

2.2.2. Specification of use cases 24

2.3. Specification of functional requirements 26

2.4. Specification of non-functional requirements 29

2.5. User interface design 32

3. DESIGN AND TECHNICAL SOLUTIONS 35

3.1. Justification of software system architecture 35

3.2. Software design 38

3.2.1. Selection of means of project implementation 38

3.2.2. UML class diagram (UML activity diagram) 40

3.2.3. File structure of the software product (application) project 44

3.3. Data model design 46

3.3.1. Conceptual infographic design ……………………… …..46

3.3.2. Designing a logical (physical) data model.………………… ….48

3.4. Information protection 5 0

3.5. The process of CI continuous integration and continuous delivery of CD

software or its components 52

4. SOFTWARE TESTING 55

4.1. Creation of checklists 57

77

4.1. Creation of checklists 59

4.1.1. Checklist for smoke testing 60

4.1.2. Critical Path Testing Checklist 62

4.2. Creation of test cases 63

4.3. Creating test input sets 65

4.4. Defect report 67

4.5. Test results report 68

CONCLUSIONS 70

LIST OF USED SOURCES 72

Appendix A. Organizational structure of the enterprise 73

Appendix B. Business processes of subject area 74

78

CONTENT

Introduction.

. . . .

3

1. The purpose and tasks of diploma project 7

2. Organization of diploma project implementation 8

3. Structure, content and scope of the diploma project. General

requirements for diploma projects .

11

4. Methodical recommendations for the development of structural

elements of the explanatory note.

13

4.1. General recommendations for the development of the

explanatory note of the diploma project.

13

4.2. Recommendations for the development of sections of the main

part of the explanatory note of the diploma project

17

5. The procedure for submission to the defense and defense of the

diploma project . . .

61

5.1. Advance protection diploma project . 61

5.2. Submission of the diploma project for defense. 62

5.3. Defense of the diploma project. 62

Recommended Books . 64

Main. 64

Additional. 66

Information resources. 67

Appendices. 69

79

EDUCATIONAL EDITION

Guidelines

before the performance of qualification works

for students of higher education

specialty 121 "Software engineering"

of the educational program "Software Engineering" of the first

(bachelor's) level

Independent electronic text network publication

Compilers: Yurii Eduardovych Parfyonov
Andriy Oleksandrovich Polyakov
Iryna Oleksiivna Ushakova
Oleg Frolov

D. O. Bondarenko is responsible for the publication

Editor V. Yu. Stepanenko

Corrector

Plan 2024. Pos. No. 82 EV. Volume 80 p.

Publisher and manufacturer — Khneu, 61166, Kharkiv, ave. Sciences, 9-A

Certificate of entry of the subject of the publishing business into the State Register, Dk
No. 4853 dated February 20, 2015.

